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Abstract. Detailed molecular dynamics (MD) studies of the origin of medium-range order in
the liquid and glassy phases of Ni81B19 alloys are presented. Particular attention is devoted
to the investigation of finite-size and self-averaging effects. It is shown that already in the
liquid phase the preferred Ni–B bonding leads to the formation of B-enriched regions with the
approximate stoichiometry of the crystalline Ni3B compounds and correlation lengths of 10
to 20 Å. If the MD simulations are performed for ensembles of medium size (1000 to 1500
atoms) where the diameter of the MD cell is not much larger than the correlation length, the
amplitude of the long-wavelength concentration fluctuations continues to oscillate even after
very long runs (>105 steps). No such oscillations are observed in much larger ensembles (104

atoms). Pair correlation functions and static structure factors obtained in both simulations are
in good agreement if the time averages over the smaller ensemble cover several periods of
the oscillations in the concentration fluctuations. The effects of these oscillations on simulated
quench experiments for the glassy phase are discussed and it is shown that good agreement with
small-angle diffraction experiments can be achieved.

1. Introduction

By now, attempts to study the structure of amorphous metallic alloys have a long history.
In the first stage, the debate was dominated by the homogeneously disordered versus
microcrystalline controversy [1]. Soon after this was settled in favour of homogeneously
disordered (i.e. truly amorphous) models, it became evident that many metallic glasses,
and the transition-metal–metalloid (TM–M) glasses in particular, possess a rather strong
chemical and also to a certain degree a topological short-range order. Whether the origin of
this short-range order (SRO) is properly ascribed to the packing of certain stereochemical
units defined in relation to the corresponding crystalline intermetallic compounds (for the
TM–M glasses these would be the trigonal TM6M prisms, the building blocks of many
crystalline TM borides and phosphides) [2] or to the modulation of the dense random
packing of the atoms by a preferential TM–M interaction is still the subject of discussions
[3]. Recent modelling studies on the basis of realistic pair interactions [4, 5] as well as
the reverse Monte Carlo analyses of the experimental data [6, 7] tend to agree that the two
pictures are not entirely contradictory and that there is a continuous transition between the
two regimes.

More recently, it has also become evident that many glasses also show at least some
degree of medium-range order (MRO). In many TM–M [8–11] and also TM–TM [12]
glasses, small-angle scattering experiments have revealed that the structure is not entirely
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homogeneous, but contains structural fluctuations, sometimes even on two different length

scales [8]. Small-angle intensities in the region whereQ > 0.1 Å
−1

have been shown to
follow a Guinier law and to indicate fluctuations with Guinier radii of the order of tenÅ.
The analysis of the variation of these intensities with isotopic [9] or isomorphic substitution
[12] has allowed us to assign the small-angle scattering in this region to fluctuations in
the concentration rather than in the density. For the Fe boride and Ni boride glasses with
about 20 at.% B these concentration fluctuations have been interpreted as arising from the
formation of small B-enriched regions of composition Fe(Ni)3B in a B-depleted matrix.
This interpretation has been confirmed by detailed molecular dynamics studies on FexB1−x

glasses, based on realistic interatomic forces from tight-binding-bond theory [13, 14]. In

small-angle neutron scattering experiments forQ < 0.1 Å
−1

a power-law behaviour of the
intensities has been detected whose origin has been attributed to inner surfaces with fractal
character [8]. In the present work we shall be concerned uniquely with the fluctuations
characterizing the MRO.

The correct description of the MRO represents a twofold challenge to modelling studies:
(i) the size of the model should be large compared to the characteristic length scale
of the MRO; and (ii) if the MRO arises predominantly from concentration fluctuations,
the time-scale for reaching thermodynamic equilibrium is set by the interdiffusion rate
and this requires very long modelling runs. The problem became evident in two recent
MD studies of the structure of TM–M glasses: while Hausleitneret al, using realistic
interatomic interactions derived from tight-binding-bond theory [13, 14] found structures
showing concentration fluctuations on a length-scale of∼13 Å , Thijsse and Sietsma [15],
using essentially the same potentials, found that the incipient phase separation is much
more pronounced. The essential difference is a much longer equilibration in the liquid
phase before the quench in the simulations performed by Thijsse and Sietsma, although
the MD runs of Hausleitneret al could be considered as converged according to the usual
criteria. To clarify the reasons for this apparent contradiction we present here simulations
with much longer runs and on much larger ensembles allowing us to study the importance
of size and self-averaging effects in MD studies of metallic glasses.

2. Molecular dynamics simulations of the liquid phase

2.1. Interatomic forces

We adopt here the effective pair and volume forces derived by Hausleitner and Hafner from
hybridized nearly-free-electron–tight-binding-bond theory [4, 13]. The description of the
s-electron-mediated interaction via pseudopotential and linear response theories [16] and
of the covalent TM d–M p interactions via tight-binding-bond theory results in strongly
non-additive pair forces with a preferential metal–metalloid interaction. The potentials for
Ni81B19 are shown in figure 1. The most important aspect is the strong non-additivity of the
forces: the Ni–B potential shows by far the strongest attractive interactions and the smallest
diameter for the repulsive part of the potential. This is the consequence of a very strong
hybridization of the B p states with the Ni d band. On the other hand, the nearly complete
filling of the Ni d band leads to population of antibonding states and hence to a low bond
order for the Ni–Ni bonds. The B–B forces are repulsive up to rather long distances due to
a large covalent radius for the B p states (for a detailed discussion of the tight-binding-bond
approach to interatomic forces in transition-metal–metalloid alloys, see [13]). From the
form of the potentials it is clear that direct B–B neighbours are energetically disfavoured.
Packing considerations lead to the following relation between the ratio of the Ni–B and
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Figure 1. Interatomic pair potentials for Ni81B19 at a density ofn = 0.0967 Å−3, derived
from hybridized nearly free-electron–tight-binding-bond theory. Full line: Ni–B; short dashes:
Ni–Ni; long dashes: B–B potential.

Ni–Ni distancesdNi−B and dNi−Ni and the average B–Ni coordination number ofNB−Ni
c

(see [16])

NB−Ni
c

13
=

(
dNi−B

dNi−Ni

)3

.

If the most probable Ni–B and Ni–Ni distances are determined by the minima in the
respective potentials, we findNB−Ni

c ∼ 9.6 and this is very close to the B–Ni coordination
numberNB−Ni

c = 9 in the cementite-type compound Ni3B. Hence we can expect that the
strongest tendency towards short-range order will appear at a composition of 75 at.% Ni.
Using these forces, canonical MD simulations for the liquid alloy (at a density corresponding
to the amorphous phase) have been performed (i) for a ‘small’ ensemble withN = 1372
atoms and (ii) for a ‘large’ ensemble withN = 10 000 atoms.

2.2. MD simulations for the small ensemble

The simulations for the ensemble ofN = 1372 atoms were started with Ni and B atoms
distributed at random over the sites of a face-centred-cubic lattice. The lattice constant was
a = 3.458 Å, corresponding to the densityn = 0.0967 Å−3 of the metallic glass and a
diameter of the MD box of 24.21̊A. The time increment was set to1t = 10−15 s. A
fourth-order predictor–corrector algorithm was used for the integration of the Newtonian
equations of motion [17, 18]. With this value of1t , the total energy remains constant
within four leading digits over many thousands of integration steps.
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Figure 2. The partial Ashcroft–Langreth structure factorSAL
BB(Q) for boron–boron pairs in liquid

Ni81B91 at T = 2023 K, plotted at intervals of 16 000 time steps (=1.6×10−11 s).

The system was first molten at a temperature ofT = 2024 K, i.e. about 650 K above
the equilibrium liquidus temperature. About 4000 to 5000 steps are necessary for melting
and the initial equilibration. The evolution of the system has than been followed over a
very long run of 120 000 steps, i.e. over 1.2×10−10 s. The most significant result is shown
in figure 2: although the potential energy does not show any significant drift after the
equilibration phase, the chemical medium-range order (CMRO)—as shown by the small-Q

part of the B–B partial Ashcroft–Langreth structure factorSBB(Q)—continues to increase
for about 16 000 steps (note that the shortestQ-vector compatible with the periodic boundary
conditions isQ = 0.26 Å−1). The strong small-angle signal inSBB(Q) is indicative of an
incipient phase separation in B-enriched and B-depleted regions. However, after reaching a
maximum, the CMROdecreasesagain, and after 33 000 steps, the system has again reached
a much more homogeneous distribution of the B atoms. Note that while the medium-range
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Figure 3. Projections of the instantaneous atomic positions in a slice of the 1372-atom model
5 Å thick for liquid Ni81B19 onto thexy-plane. The projections correspond to the state for
which the B–B partial static structure factors are shown in figure 2. For the sake of clarity, only
the B atoms (circles) and the B–Ni bonds (spokes) are shown. See the text.

order shows a strong variation, the short-range order is hardly affected at all: The position
and amplitude of the first peak inSBB(Q) remain almost unchanged.

That the variations in the long-wavelength part ofSBB(Q) reflect fluctuations in the
local B concentrations over larger distances is also illustrated in figure 3 in the form of a
projection of a slice of our model, 5̊A thick, onto thexy-plane. In this projection we show
only the B atoms and the network of B–Ni bonds (at this composition there are no direct
B–B neighbours [13]). One clearly sees that after 16 000 steps, distinct B-depleted regions
have formed (figure 3(b)), whereas after 33 000 steps, the system has returned to the much
more homogeneous initial distribution (figures 3(a) and 3(c)). The fluctuations in CSRO
continue over the entire run (see figures 2 and 3).

The analysis of the complete set of reduced pair distribution functions shows that the
fluctuations affect only the B–B correlations (figure 4): in a configuration showing incipient
segregation (figures 2(e) and 3(e)), the reduced B–B distribution functionGBB(R) oscillates
around slowly decreasing positive values up to distances of about 10Å and falls below zero
at largeR, whereas in the more homogeneous configuration reached 10 000 steps later it
oscillates around zero even for the largest distances accessible in the model. The distribution
functionsGNiB(R) andGNiNi(R) on the other hand remain completely unaffected.

The projections of the model shown in figure 3 suggest a possible origin of this curious
effect: the diameters of the B-enriched regions are of the order of 10 to 15Å, i.e. of the
same order of magnitude as the linear dimension of the MD cell (edge length 24.2Å). The
B-enriched regions are formed and destroyed in a dynamic equilibrium. If this argument
is correct and if the correlation length of 10 to 15Å corresponds to thermal equilibrium,
the time dependence of the amplitude of the long-wavelength concentration fluctuations
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Figure 4. Partial reduced radial distribution functions
GBB(R), GNiB(R) andGNiNi(R) for liquid Ni81B19.
The full lines show the distribution functions for a more
homogeneous configuration (corresponding to part (g)
in figures 2 and 3), while the broken lines show that
for a configuration where the tendency to segregation
in B-rich and B-depleted regions is more pronounced
(cf. part (e) in figures 2 and 3).

Figure 5. Mean square displacements of Ni (full lines)
and B (broken lines) atom in liquid Ni81B19.

should disappear in a larger ensemble, where the ensemble average itself corresponds to an
extended time average over the smaller ensemble. The problem is whether the extension
to a larger ensemble eventually also leads to significant modifications in the correlations
functions outside the small-angle region, i.e. whether the smaller ensemble shows finite-size
effects that do not disappear after an extended ensemble average.

Before describing the results obtained with a much larger ensemble, we briefly mention
the results obtained for the diffusion coefficients. Figure 5 shows the mean square
displacements of Ni and B atoms, calculated over this very extended MD run. From
the slope of the curves, we obtain diffusion coefficients ofDNi = 2.3 × 10−9 m2 s−1 and
DB = 2.0× 10−9 m2 s−1, respectively. If just the nominal atomic sizes are considered, the
result that the Ni atoms diffuse faster than the B atoms might appear to be counterintuitive.
However, we have to remember that the B–B nearest-neighbour interactions are repulsive,
and that there are very strong Ni–B interactions confining the B atoms within the cage of
the surrounding Ni atoms.

2.3. MD simulations for the large ensemble

To check this point, the MD simulations have been repeated for a much larger ensemble
of N = 10 000 atoms. In this model the linear dimension of the MD cell is 46.93Å,
corresponding to a shortest wavevector ofQ = 0.13 Å−1. All other parameters of the
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Figure 6. The partial Ashcroft–Langreth structure factorSAL
BB(Q) for a B–B pair calculated for

the 10 000-atom ensemble after 1, 2, and 3×104 time steps (full, dashed and dot–dashed lines).
The thin vertical line indicates the smallest wavenumber compatible with the periodic boundary
conditions for the smaller 1372-atom ensemble. See the text.

simulation are unchanged; the run has been extended over about 30 000 time steps.
Figure 6 shows again the B–B partial structure factors calculated after 1, 2, and

3×104 time steps. Although initially there is a slow increase ofSBB(Q) for the smallest
wavevectors, there are no indications for a time dependence of the long-range concentration
fluctuations. The same picture also results from a direct inspection of the three-dimensional
structure: the projections shown in figure 7 demonstrate that there are indeed structural
inhomogeneities in the system in the form of B-enriched and B-depleted regions. The
characteristic distance between these regions can be estimated to be 15 to 20Å, i.e., only
slightly larger than the simulations on the smaller systems had suggested. This would
confirm that the correct ensemble average, which is obtained for the small system only after
an extended time average, is obtained for the large system after much shorter runs, due to
the self-averaging properties of the larger ensemble.

For the structural properties, both sets of simulations lead to completely equivalent
results. This is demonstrated in figure 8: for the Ni–Ni and Ni–B correlations the two
sets of partial structure factors and reduced radial distribution functions are identical. For
the B–B structure factor we note a minimal difference in the small-Q regime. In the B–
B distribution function we find a slightly larger diameter of the B-enriched regions in the
simulations with the large ensemble compared to those with the smaller ensemble, as already
discussed above. Altogether, the comparison of the results obtained with the large and
small ensembles confirms our expectation: the time-dependent medium-range concentration
fluctuations disappear in the averages taken over the large ensemble because the system
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Figure 7. Projections of a slice of the 10 000-atom model onto thexy-plane. Instantaneous
configurations after about 0.5, 1, 1.5, 2, 2.5 and 3×104 time steps are shown. Compare figure
6 and the text.

size is large enough for self-averaging to occur even for fluctuations with a rather large
correlation length.

3. The simulated quench experiment

Finally, we want to briefly address the problem of the simulation of the glassy phase, and the
dependence of the results of the simulated quench on the concentration-fluctuation effects
discussed above. Evidently the results obtained with the small ensemble will depend to
some degree on the state of the liquid system in the moment at which the quench starts.
We investigate this for two states showing strong and weak segregation effects. In both
cases the quenching rate is about 1012 K s−1, and the cooling run starts atT = 2023 K and
continues until room temperature is reached. The volume is constant during the quench.
If we start from a liquid configuration showing strong demixing effects (configuration (b)
in figure 2), the B–B partial structure factor indicates a weak enhancement of both the
SRO (as measured by the amplitude of the main peak= prepeak inSBB(Q) and in the
concentration-fluctuation structure factorSCC(Q)) and in the MRO (as measured by the
small-angle amplitude); see figure 9. If we start from a more homogeneous configuration
(state (c) in figure 2), we find a continuous increase of the SRO during the quench, but the
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Figure 8. Partial reduced radial distribution functionsGij (R), i, j = Ni, B (a) and Ashcroft–
Langreth partial static structure factorsSAL

ij (Q) (b) for Ni81B19. Full lines: a large ensemble

(10 000 atoms) and 3×104 time steps; broken lines: a small ensemble (1372 atoms) and 12×104

time steps.

MRO increases slightly only during the final annealing stages for the glassy sample at room
temperature. Altogether, the small-angle peak remains much weaker than for the first run.
The other partial structure factors are essentially identical to those obtained in our previous
MD study of Ni–B glasses [13].

It turns out to be very difficult to establish a clear trend for changes in the SRO that
are possibly induced by the differences in the MRO: if the quench is started from the more
homogeneous liquid configuration, the first peak inSBB(Q) is relatively asymmetric (with
a shoulder on the left-hand side) before the quench, but quite symmetric in the glassy state
(figure 9(b)). If the quench proceeds from a configuration with stronger medium-range
concentration fluctuations, the main peak inSBB(Q) is almost symmetric in the liquid
phase, but assumes an asymmetric form with a left-hand shoulder in the glassy state. This
result indicates, in agreement with the conclusions drawn from the results for the liquid
alloys, that the fluctuations observed in the MRO and SRO are only weakly coupled. In
any case, if relatively small MD ensembles are used to investigate MRO and SRO effects
in glassy alloys, an average must be taken over a representative set of different starting
configurations, which is similar to the ‘inherent structure approach’ proposed by Stillinger
and Weber [19] and used by one of the present authors for a series of metallic glasses [20].
No such dependence on the starting state is expected nor observed in simulations with the
large ensemble where the resultingSBB(Q) for the glassy alloy is essentially identical with
the average over the results shown in parts (a) and (b) of figure 9. For a detailed comparison
with the large-angle diffraction data, we refer again to our previously published results [13].
Except for the small-angle region and the small changes in the prepeak ofSBB(Q) arising
from an average over different quenched configurations, these results remain perfectly valid.
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Figure 9. The B–B static structure factor of glassy Ni81B19, produced by a quench starting from
a liquid state with a strong demixing tendency (a) and from a state with a more homogeneous
distribution of the B atoms (b). See the text.

Figure 10. The neutron-weighted total static structure factorS(Q) (∝SBB(Q)) for amorphous
0Ni81B19 prepared with an isotope mixture for Ni having zero average scattering length. Full
line: an MD simulation for a 1372-atom ensemble (configuration average); dashed line: MD
results for the 10 000-atom ensemble; full dots: small-angle neutron scattering [8].

In the small-angle region we can compare the simulation results with small-angle neutron
scattering experiments on isotope-substituted Ni81B19 glasses [8]. If the glassy alloy is
prepared with a mixture of Ni isotopes having zero average scattering length, the scattering
intensity is determined by the B–B partial structure factor alone. Figure 10 compares
the experimental results with the small-angle intensities calculated for a large ensemble
and for an average over quenched configurations of the smaller ensemble. Differences
between the two ensembles appear only at wavenumbers lower than the limit imposed by
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the periodic boundary conditions of the smaller ensemble. Beyond this limit, the good
agreement between the two theoretical results confirms the self-averaging properties of the
large ensemble; the agreement between theory and computer simulation confirms that the
MRO is indeed dominated by concentration fluctuations. This is also in accordance with
our results on the MRO in Fe–B glasses [14].

4. Conclusions

We have analysed the description of medium-range-order effects (and of medium-range
concentration fluctuations in particular) in liquid and amorphous materials via molecular
dynamics simulations. We have shown that the interplay of a strong preference for
heterocoordination and of packing effects can induce medium-range dynamical concentration
fluctuations in the liquid phase. If the diameter of the MD ensemble is only about twice the
correlation length of the concentration fluctuations, their amplitude continues to oscillate
even over very long runs. Only simulations on much larger ensembles reach a stable
equilibrium with respect to medium-range fluctuations. Long-time averages over the smaller
ensembles are in good agreement with the results obtained in relatively short runs on the
larger ensembles, indicating the self-averaging properties of the large ensembles.

Our results explain the origin of the discrepancies observed between earlier simulations
[13, 15] on smaller ensembles. These results were reasonably well converged as far as the
SRO is concerned, but not with respect to the MRO. The quench from the liquid phase
was started from configurations with distinctly different amplitudes of the medium-range
concentration fluctuations.

Together with our previous studies of MRO in Fe–B glasses (based again on simulations
for a 10 000-atom ensemble) [14], the present work shows that medium-range concentration
fluctuations are a common feature of amorphous transition-metal–metalloid alloys and that
they are well described in MD simulations on the basis of tight-binding-bond potentials,
provided that these simulations are based on sufficiently large ensembles and/or very
extended time averages.
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